Le Nombre d’Or (1ère partie)

Le Nombre D’Or
ou la Divine Proportion

Le Nombre d'Or (1ère partie) dans CHIFFRES pi-phi-tattoo

 

Les Romains, les Grecs, les Juifs et les Egyptiens semblaient tous d’accord : 1,618 était le nombre d’or, le nombre de l’harmonie universelle, le nombre de la création, le nombre de Dieu, le Créateur. 

Lle nombre utilisé partout dans l’ordre caché de la Création et qu’il fallait donc employer dans les édifices dédiés au Créateur afin de s’en rapprocher. Empreint de mystère, objet d’un culte tantôt religieux, tantôt magique, le nombre d’or influence la vision occidentale de l’harmonie.  

Chez les Grecs, avec le développement de la géométrie, la secte secrète des pythagoriciens en avait fait un symbole d’harmonie universelle, de vie, d’amour et de beauté. Au Moyen-Age, les savants, les pères de l’église, les bâtisseurs, les maîtres d’ouvrages ou maîtres d’oeuvre, se réclament de la doctrine platonicienne des corps cosmiques, les cinq polyèdres réguliers, et ont fait du nombre d’or, « la divine proportion », un modèle de perfection esthétique et philosophique. » 

Le nombre d’Or est appelé Phi  

 

phi dans CHIFFRES

On le désigne par la lettre grecque ( phi ) en hommage au sculpteur grec Phidias (né vers 490 et mort vers 430 avant J.C) qui décora le Parthénon à Athènes.  

Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d’or dans le Temple d’Andros (découvert sous la mer des Bahamas). 

 

CAHP2432

 

2800 av JC : La Pyramide de Khéops a des dimensions qui mettent en évidence l’importance que son architecte attachait au nombre d’or. D’après Hérodote, des prêtres égyptiens disaient que les dimensions de la Grande Pyramide avaient été choisies telles que : « Le carré construit sur la hauteur verticale égalait exactement la surface de chacune des faces triangulaires » 

 

 pyramide%20KHEOPS

Au Ve siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d’or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d’Athéna Parthénos . Il utilise également la racine carrée de 5 comme rapport. 

geodesie_archimede
Euclide
 

 

Au IIIe siècle avant J-C. : Euclide évoque le partage d’un segment en « extrême et moyenne raison » dans le livre VI des Eléments.

Une droite est dite coupée en extrême et moyenne raison quand, comme elle est toute entière relativement au plus grand segment, ainsi est le plus grand relativement au plus petit. Euclide, Eléments, livre VI, 3ème définition. 

Fibonacci2
Fibonacci 

 1175 : Fibonacci est né à Pise. Son vrai nom est Léonardo Pisano. Fibonacci est un surnom qui vient de filius Bonacci qui veut dire fils de Bonacci. (Bonacci signifie chanceux , de bonne fortune). Il était l’un des plus grands mathématiciens du moyen-âge.

C’est lui qui a introduit la numération décimale et l’écriture arabe des chiffres en Occident, en ramenant dans son livre Liber abaci, les connaissances acquises en Algérie où travaillait son père. En 1202 , il écrit un livre « liber abaci » qui porte sur les méthodes algébriques et des problèmes.Dans cet ouvrage, il émet l’idée que l’arithmétique et la géométrie sont liés; mais aussi il met l’accent sur les neufs symboles indous de la numération ainsi que le signe zéro. Fibonacci fut sans doute le mathématicien le plus habile de toute l’époque médiévale chrétienne.

  Le problème de son livre qui a le plus inspiré les mathématiciens est le problème des lapins :

« Combien de couples de lapins obtiendrons-nous à la fin de chaque mois si commençant avec un couple, chaque couple produit chaque mois un nouveau couple, lequel devient productif au second mois de son existence. »
Ce problème donne lieu à la suite de FIBONACCI : 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; 55 ; 89 ; 144 ; 233 ; 377 ;….
Chaque terme est la somme des deux termes qui le précèdent : Un = Un-1 + Un-2 .  

 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit « La divine proportion » illustrée par Leonard de Vinci

Au XIXème siècle : Adolf Zeising (1810-1876), docteur en philosophie et professeur à Leipzig puis Munich, parle de « Section d’Or » (der goldene Schnitt) et s’y intéresse non plus à propos de géométrie mais en ce qui concerne l’esthétique et l’architecture. Il cherche ce rapport, et le trouve (on trouve facilement ce qu’on cherche …) dans beaucoup de monuments classiques. C’est lui qui introduit le côté mythique et mystique du nombre d’or. 

Au début du XXème siècle : Matila Ghyka, diplomate roumain, s’appuie sur les travaux du philosophe allemand Zeising et du physicien allemand Gustav Theodor Fechner ; ses ouvrages L’esthétique des proportions dans la nature et dans les arts (1927) et Le Nombre d’or. Rites et rythmes pythagoriciens dans le développement de la civilisation occidentale (1931) insistent sur la prééminence du nombre d’or et établissent définitivement le mythe . 

 

la_cene
« La Cène » de Salvator Dali ; https://fr.wikipedia.org/wiki/La_C%C3%A8ne

 

Au cours du XXème siècle : des peintres tels Dali et Picasso, ainsi que des architectes comme Le Corbusier, eurent recours au nombre d’or. Le nombre d’or véritable petit nirvana arithmétique a été une voie privilégiée de communication avec l’au-delà…  

 

unite_nombre_dor

 

 

1945 : Le Corbusier fait bréveter son Modulor qui donne un système de proportions entre les différentes parties du corps humain. 

Phi apparaît dans toute la vie et l’univers. Certains croient que c’est les résultats les plus efficaces, le résultat des forces normales. Certains croient que c’est une constante universelle de conception, la signature de Dieu.  

Cette même proportion est utilisée pour réaliser l’équilibre, l’harmonie et la beauté dans ses propres créations d’art, d’architecture, de couleurs, de conception, de composition, d’espace et même de musique.  

De nombreux artistes ont fondé leurs œuvres sur des ossatures géométriques. La recherche d’un tracé régulateur , ou schéma géométrique peut-être effectuée par deux méthodes :  

- L’inductive : dégager les nœuds et les lignes essentielles de la composition , puis rechercher si le réseau peut-être rattaché à tel nombre ou à telle figure géométrique  

- La déductive : partir d’un réseau géométrique et vérifier que ledit réseau comporte tous les nœuds et les lignes essentielles de la composition .  

 violon

 

 

rm-lab

Labyrinthe de la cathédrale de Reims  

Avant d’être détruit par les chanoines au XVIIIe siècle, le labyrinthe de Reims mesurait 10, 36 mètres de large. De base carrée, il occupait les 3ème et 4ème travées de la cathédrale en partant de la façade occidentale. 

Selon Dominique Naert, « le labyrinthe de Reims répond à la résolution de la quadrature du cercle : la solution qui consistait à résoudre le problème des bâtisseurs, qui ne savaient comment calculer la surface d’un cercle, était déjà énoncée 1800 ans avant Jésus-Christ, dans la papyrus de Rhind trouvé à Luxor. En effet, si à partir du VIe siècle en Inde, les savants avaient trouvé la solution de Pi (3,1416), il faudra attendre le XVIIe siècle pour qu’en France les mathématiciens résolvent définitivement le problème. Pour les bâtisseurs du Moyen-Age, la solution consistait à réaliser, géométriquement, un cercle de la même dimension qu’un carré dont on savait calculer la surface : de trouver ainsi la construction géométrique qui permettrait de réaliser un carré de la même surface que le cercle correspondant. » 

Les proportions du labyrinthe suivent les procédés mathématiques définis par Léonard de Pise (dit Fibonacci) dans son « Liber Abaci » en 1202. La suite de Fibonacci consiste à additionner les deux termes précédents (1, 2, 3, 5, 8, 13, 21, 34, 55 …) et le rapport entre chaque terme (2/1 , 3/2, 5/3 …) correspond au nombre d’or : 1,618. 

La proportion 2/1 est celle de la pyramide de Khéops, des Temples Egyptiens et Grecs mais aussi celle du Temple de Salomon. Jean Chevalier et Alain Gheerbrant soulignent que dans « la tradition kabbalistique, reprise par les alchimistes, le labyrinthe remplirait une fonction magique, qui serait un des secrets attribués à salomon. C’est pourquoi le labyrinthe des cathédrales serait appelé labyrinthe de Salomon. Aux yeux des alchimistes, il serait une image du travail entier de l’oeuvre, avec ses difficultés majeures : celle de la voie qu’il convient de suivre, pour atteindre le centre, où se livre le combat des deux natures ; celle du chemin que l’artiste doit tenir pour en sortir.

 à suivre…

Publié dans : CHIFFRES |le 1 octobre, 2010 |2 Commentaires »

Vous pouvez laisser une réponse.

2 Commentaires Commenter.

  1. le 2 mai, 2014 à 17:48 Antoine écrit:

    Belles connaissances mais comme l’a dit Marie, serait il possible de rendre son oeuvre à Léonard de Vinci (Salvador Dali hahahaha)

  2. le 10 avril, 2012 à 21:30 Marie écrit:

    La Cène de Salvador Dali !!!!!!!!!!!!!!!!!!!!!!
    https://fr.wikipedia.org/wiki/La_C%C3%A8ne
    pouvez-vous la rendre à son auteur Léonard de Vinci ???
    Merci

Laisser un commentaire

Homosexualité dans la société |
madioucisse |
Les anniversaires des stars |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | Sénégal Junior Intelligence
| Anglais pour non-spécialist...
| bobs3